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RADIATION FROM SLOTTED-CYLINDER ANTENNAS IN

A REENTRY PLASMA ENVIRONMENT

By Calvin T. Swift

SUMMARY

A method is presented for calculating the equatorial patterns of slot

antennas on conducting cylinders coated with plasmas which are inhomogeneous in

a direction radially outward from the cylinder. The procedure consists of

separating the wave equation into real and imaginary parts and numerically inte-

grating between appropriate boundary conditions. The solutions are coefficients

of the Fourier series which express the nature of the far-field pattern. The

results differ from those obtained by plane-wave theory and demonstrate the

desirability of this approach to predict signal attenuation of antennas in a

radially varying plasma environment. Appendixes are included which outline pro-

cedures for solution of problems involving scattering, antenna arrays, and an

aspect of the near-field problem. __*_

INTRODUCTION

When a hypersonic vehicle enters an atmosphere, a hot gas region is formed

between the body and the shock wave; thereby, free electrons are generated to

interact with electromagnetic radiation emitted from onboard antennas. If the

ionization is sufficiently strong, a radio blackout condition may occur which

disrupts communications over a large portion of the trajectory.

The electron density and collision frequency of the plasma, determined by

appropriate flow-field analysis_ are two important quantities needed to specify

the complex index of refraction and, hence_ the nature of the interaction. In

general, at any given trajectory point, the electron concentration shows con-

siderable variation, particularly in the direction normal to the vehicle; con-

sequently, the propagation equations must be modified to include gradients of the

index of refraction.

The radiation-source geometry is another important parameter. Considerable

attention has been concentrated on two models - namely, the slot on the flat

ground plane (refs. i, 2, and 3) and the slot on the cylinder. The former has

application to reentry problems provided the curvature of the body is neglected.

This theory has been developed to include losses, finite plasma dimensions_

anisotropic effects and finite-aperture size; however, inhomogeneous plasmas are

excluded. If the wavelength is comparable to the vehicle size, the curvature of



the structure and surrounding plasma must be considered. To simplify the problem,
a cylinder is selected as a reasonable mathematical model since this shape repre-
sents the aft portions of many reentry vehicles. The source configuration rele-
vant to this geometry is the finite slot. The finite-slot representation of the
physical picture, however, involves complicated mathematical procedures which
restrict complete pattern calculations to plasma coatings that are homogeneous
and nonlossy (refs. 4_ 5, and 6). If the antenna is infinitely long, the geom-
etry reduces to two dimensions and involves only the radial and azimuthal coor-
dinates. The problem of the homogeneouslossy plasma has been solved in a recent
report where collisions are included through the use of thin coating and high and
low frequency approximations (ref. 7). The equations pertinent to the two-
dimensional model can be extended to define interactions with inhomogeneous plas-
mas. However, the practical solutions of these equations, in general, are not
specifiable because the plasma properties may vary arbitrarily within the shock
layer. Therefore, analytical solutions (ref. 8) or WKBapproximations are not
realistic for many problems of interest and must be abandoned in favor of exact
numerical techniques.

One numerical approach considers the plasma as a multilayered series of
lossy homogeneousslabs (ref. 9)- This technique has been derived for convenient
application to plane waves at normal incidence to a plasma slab_ however, this
procedure may be inadequate to describe the present problem. The boundary con-
ditions must be applied a large number of times and calculation of Bessel func-
tions of complex arguments is required at each boundary. Since this approach
seems to introduce computational difficulties, the alternative scheme of directly
integrating the wave equation was chosen (refs. lO and ll).

The mechanics of the scheme is as follows: First, all the fields are prop-
erly normalized so that the boundary conditions at the air-plasma interface are
expressible in terms of the known quantities (Bessel functions_ index of refrac-
tion, wave number, and the radial distance to the boundary). Second, all quanti-
ties are separated into real and imaginary parts. As a result_ the number of
boundary conditions at the air-plasma interface is doubled_ and the wave equation
expands into a pair of simultaneous second-order differential equations. Finally_
the solutions of the wave equation and the excitation voltage at the conductor-
plasma interface specify the unknown coefficients and_ henc% the far-field pat-
tern. Equatorial patterns for finite-slot antennas are also found from these
solutions (ref. 4).

The primary topic of this paper is the single axial slot; however, appendixes
A to E describe the necessary procedures which can be employed to calculate
antenna patterns of circumferential slots_ scattering patterns_ antenna arrays,
and the impedance of a cylindrical current.

SYMBOLS

An, Am, Cm,C2,

an, am, bm, dm, em

coefficients
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a

a_o

b

EO

Fm

Gm

HO

H_2)(kor )

J

Jm(k0 r)

k

k0

Ne

n

R

r, _ z

Uz

VO

V(r) = 1 -

radius of conducting cylinder, m

width of slot, m

radial extent of plasma coa% m

electric field intensity_ v/m

amplitude of plane wave, v/m

radially dependent part of electric field intensity, v/m

radially dependent part of magnetic field intensity, amp-turns/m

magnetic field intensity_ amp-turns/m

amplitude of plane wave, amp-turns/m

Hankel function of second kind and of order m

current density, amp/m 2

Bessel function of order m

wave number_ m -I

free-space wave number, m -I

electron density_ m -3

index of refraction

pattern factor

source resistance per unit length_ 2/m

cylindrical coordinates

unit vector in z-direction

applied potential on slot

i

2 + F (r) -I2[gr ]
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W(r) =
1

___-----_12 +[_1 2

X source reactance per unit length, _/m

Ym(kor) Neumann function of order m

x,y, z Cartesian coordinates

Z source impedance per unit length_ g/m

Z0 intrinsic impedance of free space_ _ 376.7

attenuation coefficien% nepers/m

5 Dirac delta function

c0 permittivity of free space, 8.854 X lO -12 f/m

c permittivity_ f/m

_0 permeability of free space, 4_ × l0-7 h/m

w electron collision frequency_ collisions/sec

_* dummy variable representing azimuthal coordinate of slot integration

propagating frequencyj radians/sec

_p plasma frequency_ 2_ x 8970 X N_e radians/sec

Subs cript s:

spec specified value

r_3 z vector components in principal directions

Supers cript s:

0 dielectric region (0 <= r <= a)

I plasma region

il free-space region
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i

S

incident field component

scattered field component

A prime denotes differentiation with respect to r.

ANALYSIS OF THE AXIAL SLOT

The model shown in figure i consists of an infinitely long conducting cylin-

der into which is cut a long radiating slot of finite width. The slot is excited

by a tangentially applied electric field, uniformly distributed in the axial

direction but specified across the slot. An exponential factor ej_t is chosen

to describe the time dependence of the fields. The complex index of refraction

of the plasma surrounding the cylinder is assumed to vary only in the radial

direction.

The vector wave equation which describes the propagation of the magnetic

vector in the presence of inhomogeneous media is of the form

V2_ + k02n2_ =

-_2

_ ×(e×
n2

where the complex index of refraction n is a function of position.

equation (i) expands into three complicated differential equations.

restrictions imposed by the model generate certain simplifications.

In general_

However, the

The problem is two dimensional; thereby, the derivatives of the fields with

respect to the z-coordinate vanish. Als%

Ez = H r = H_ = 0
(2)

Since the index of refraction varies only in the radial direction_

n = n(r) (3)

and equation (i) reduces to

i _n2(r) 8HzI(r'_)

n2 _r _r
+ kO2n2(r)HzI(r,_) = 0

(a <_-r _ b) (4)

Representing HzI(r,_) by the following complex Fourier series

5



HzI(r,_) = _, Gin(r) ejm_

m=-oo

(5)

transforms equation (4) into the following total differential equation:

i d (r d Gm ) i dn2 dGm k02_ 2 \ m2)21
+ -- _ Gm

r dr _r n2 dr dr /kor

: o (a-<_r < b) (6)

In order to properly satisfy the boundary conditions at r = b it is neces-

sary to know the functional behavior of the wave in free space. Since the index

of refraction is constant in free space the solution is

oo

Hzll(r,_) = _ CmH(m2)(kor)e jm_ (r _= b) (7)

m=-_

where H(m2)(ko r) is the Hankel function describing outgoing waves, and the coef-

ficients Cm are to be determined.

The _-components of the electric vector are also of interest. From the

relationship

E : _ V x _ (8)
j_e

the respective E_-components in the plasma and in free space are given by

oo

j_e(r) Gm' (r)eJm_ (9)

m=-_

and

0o

_II _ l _ (2)'j(oe0 CmH m (kor)e jm_ (i0)

m_--eo

Since the tangential components of the electric and magnetic fields must be

continuous at r = b, the following boundary conditions must be satisfied:

(lla)

And, on the surface of the cylinder_ r = a, the boundary conditions is given by

6



E_I(a,_) = E_,spec(a,_)

The specified electric field intensity E_,spec(a,_)

of the Fourier expansion (ref. 12) as

(lib )

can be expressed in terms

E_,spec(a,_) _ E_(a,_*)e -Jm_ d_*

m=-oo

The applicability of the E_,spec term is qualified in appendix C.

By direct substitution, the boundary conditions (eqs. (lla) and (lib))

become at r = b

=
!

cO_ %'(b)

and at r = a

(12)

(13a)

_ _.)e-Jm_*l Z E_(a, d_*j_ia)%.(a) : _

These equations_ for convenience, are normalized so that

Cm

Gm'(b)_ _(b___l)2)(kob
Cm cO

(13b)

(1_a)

Gm'(a) = j_c(a) Z _ E_(a,_.)e-Jm_* d_* (14b)
Cm 2_Cm

Having completed the normalization, it is convenient to separate the fields into

real and imaginary parts by means of the definition

Gm(r) = tm(r ) + jUm(r ) (15)
Cm

7



The real and imaginary parts of equations (14) can be separated to establish

values of tm, Um, and their derivatives at r = b. As a result of this opera-

tion, the boundary conditions can be expressed in the following form:

tm(b ) = Jm(knb) (16)

Um(b ) = -Ym(kob ) (17)

I- m )_ [k m )Itm'(b) = V(b) kOJm+l(kob) + _ Jm(ko b - W(b) OYm+l(ko b) _ Ym(ko b (18)

I- ( ) m (k)l Ik ( ) m (k)_Um'(b) : W(b) kOJm+l kob + _ Jm 0b + V(b) oYm+l kob - _ Ym 0b (19)

where the dielectric constant has been separated into real and imaginary parts by
means of the definition

_(r) = V(r) + jW(r) (20)
cO

Since the medium is a plasma, the expressions for V(r) and W(r) become

V(r) = 1 -
i

._..)_ 2 + [____ 2

(21)

and

W(r) =
V(r)/C0p(r) i

____2 E V( r)-'] 2

(22)

Because the index

conditions so that
m assumes integer values, symmetry occurs in the boundary

t_m(b) = (-l)mtm(b)

U_m(b) = (-l)mum(b)

t_m'(b) = (-m)mtm'(b

m vu_m'(b)= (-i)Um (b

(23)

8



Other than a continuity requirement on the functions and their first derivatives,

V(r) and W(r) may vary arbitrarily. Consequently, numerical integration of

the wave equation is required. In order to properly initiate the integration,

equation (6) is expressed in terms of tm and u m through equations (15)

and (20). The left-hand side of equation (6) then separates into real and imag-

inaryparts, each of which must independently vanish, and the result is the fol-

lowing set of simultaneous differential equations

Ir 1 (_r dUm) W Id_r dtm dV alum ) II V

1 d dtm .... V dV dim dW __ __ + + ko 2

r dr\ _-r / V 2 + W 2 dr dr _r V 2 + W 2 dr dr _r

i d (r _--) V (_r dtm dV d_--r) W (dV dtm dW dum ) II V
r _ V 2 + W _ d-7- + _ + V-_7_+ W2\¥r dr dr _" + k02

m2) 
_ t m - Wu m :

kor

- um + Wt_

(24)

Only positive values of m need be considered because of the recurrence relation-

ship (eqs. (23)).

The solutions at r = a and the boundary condition at r = a (eqs. (14b)

and (15)) determine the unknown coefficients Cm so that

f )jou¢(a) ___ E_(a,_.)e-Jm_* d_* _EC_(_ _ +- _'i:)_ (25)
Cm = 2_

By substituting equation (25) into equation (7), and asymptotically expanding

the Hankel function, the far-field value of HzIl(r,_) becomes

OO

_c(a),_ e-J(kor-_) _f tm'(a ) - JUm'(a ) 21eJm(_+_) _ . _..-jm_*
HzII(r'_) _ 2_j V_k0r _ _m'(a)_2 + [Um'(a)_ ___ E_[a,_ )e de*

(26)

The following equation for the far-field pattern is obtained by normalizing the

O_eoVoi_--"

absolutevnueofequation(26)bydividingby  V--f or.

ITf tm'(a)- jura'(a) _eJm(_+_) _ _.)e-Jm_*
m--_:_-__m'(a)_ 2 + [ um'(a)_ _ E_(a, d_*

(27)
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Thus, the antenna pattern of an infinite-slot antenna of finite width in the

_-direction is determined by solving m sets of the differential equations (24)

and summing appropriately to achieve the desired convergence of equation (27).

Furthermore 3 the equatorial pattern of finite length slots are also determined

by using this method along with the proper normalization factors.

If the applied electric field is singular (E_(a,_*) = VOa 8(_*)), the inte-

gral in equation (27) is equal to Vo/a. In this case, equation (27) can be
expressed in the form

(28)

RESULTS

Numerical integration of the propagation equations was performed on an elec-

tronic data processing system by the Runge-Kutta method with an accuracy

of 10-7 per integration. The radiator was assumed to be a line source with

- VO 8(_*); thus_ the Fourier integral in equation (27) is equal toE¢, spec - -_-

Vo/a. The computation of Pz(_) was made at i0 ° increments in the range

0° _- _ __ 90o and at 5° increments for 90o <= _ <= 180 °. Free-space patterns were

calculated by requiring all input values of the electron density to vanish.

A free-space pattern was manually computed and the agreement between these

calculations and the computer results was excellent. The results of hand calcula-

tions were also compared with the numerical results for a case where region I was

a homogeneous nonlossy plasma. Again, the computational comparisons were good.

As a final test, the program was checked against the analytical results of a 1/r
electron density distribution given in figures 4 and 9 of reference 8. Although

the magnitudes could not be compared, the shapes of the numerically determined
patterns were identical with those of reference 8.

The Homogeneous Plasma

The homogeneous plasma case was analyzed for expediency in determining gen-

eral pattern behavior as a function of the various parameters - that is, plasma

frequency 3 collision frequency_ plasma thickness 3 and cylinder size. The free-

space patterns for cylinders with koa = 0.523 1.43, and 0.13 are shown in fig-

ure 2. Five plasma frequencies I_/e]p = 0.01_ 0.03, 0.i0, 0.30, and 1.0) and three

collision frequencies (v/_ = 0.3003 0.045, and 0.020) were selected to represent

lO



possible values encountered under flight conditions. The three plasma depths

considered correspond to b/a = 1.2, 1.6, and 2.0.

The patterns as a function of these parameters are plotted in figures 3 to 8.

All the patterns shown in these figures are normalized so that the pattern

strength at _ = 0° represents an actual attenuation (or gain). In other words,

the scale of the pattern is such that 0 db represents the free-space pattern

strength at _ = 0°.

The most striking patterns are those in which the plasma frequency ratio

_/_p is of the order of unity. These patterns are strongly dependent upon

changes in geometry and collision frequency, and it is difficult to discuss gen-

eral pattern trends other than that the behavior becomes more anomalous as the

collision frequency increases. It is of particular interest to note that a sig-

nificant amount of radiation can be directed toward the rear of the antenna.

When the ratio _/_p becomes significantly less than unity, the patterns become

much more regularly behaved.

An interesting feature of these curves is the relatively small amount of

pattern shift at constant plasma thickness_ particularly with regard to the

smaller cylinder. Another interesting result is the increased forward direction-

ality as the plasma thickness is increased. These observations are consistent

with the results of appendix E_ that is_ if the magnitude of V is large, the

approximate pattern can be specified by computing the free-space pattern of a line

source located on a metallic cylinder of radius b and multiplying by the atten-

uation factor 2e

The free-space pattern values at _ = 0°

Pz( : o): e

m=-_

are plotted in figure 9 as a function of

the absolute attenuation is given by

meko
Attenuation = 2e -_'b-a'( _

koa. This curve is significant because

where both sums can be inferred from figure 9-

ii



The Inhomogeneous Plasma

As a practical example of the techniques employed for the inhomogeneous
plasma, consider the electron density and collision frequency distribution shown
in figure i0. The curve for Ne with a maximumbetween the shock and the vehicle
represents the case of flow which includes a viscous boundary layer, and the curve
for Ne which continually increases from the shock to the body corresponds to an
inviscid shock layer. The patterns resulting from the two flow-field assumptions
are plotted in figures ii and 12. At _ = 0°, the pattern attenuation is approx-
imately -1.5 db for the viscous boundary-layer profile, and approximately -5.5 db
for the completely inviscid profile. It is of interest to compare these values
with the transmission coefficients computed with the use of plane-wave theory.
In reference ii, the viscous and inviscid values were, respectively, -18.1 db and
-34.8 db for these sameplasma distributions. It is therefore very significant
to note that the change of wave interaction model from the plane-wave slab type
to the line-source cylinder type resulted in a large change in transmitted signal
strength for an identical plasma coating. The importance of choosing appropriate
wave propagation models for signal attenuation problems is clearly indicated from
this comparison.

There is a large discrepancy between plane-wave and cylindrical-wave results;
however, it must be emphasized that the fields inside the cylinder were ignored.
Consequently, the boundary conditions were only partially applied at the surface
of the cylinder. (See eq. (llb).) Although the proper boundary conditions at
the slot are difficult to apply, the interior fields of the cylinder must be con-
sidered in order to properly compare the plane-wave and cylindrical-wave results.

CONCLUSIONS

A method for calculating the equatorial patterns of slot antennas on con-
ducting cylinders has been presented. For expediency in determining general
pattern behavior as a function of the various parameters, the homogeneousplasma
case was analyzed and the following conclusions are noted from examination of the
results:

i. Extreme pattern irregularities occur in the critical region (the ratio
of signal frequency to plasma frequency _/_p approximately equal to i) of a
homogeneousplasma. The patterns appear to be sensitive to changes in geometry
and collision frequency, and it is possible for much of the radiated energy to
be directed behind the antenna.

2. If a thick homogeneousplasma is overdense, the patterns can be approxi-
mated by computing the free-space pattern of a source located on the surface of

a metallic cylinder of radius b, and multiplying this pattern by 2e-_(b-a)v_
where _ is attenuation coefficient and a is radius of conducting cylinder.

3- For values of _/_p_ i, improved signal transmission occurs with
increasing collision frequency.

12



4. The pattern is attenuated with decreasing values of' _/_p and increasing
thicknesses of the homogeneousplasma.

5. The amount of energy transmitted through a plasma may be much greater
than that predicted by plane-wave theory.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., November4, 1963.

13



APPENDIX A

THE CIRCUMFERENTIAL SLOT

The geometry of the slot antenna problem is shown in figure i; however, the

excitation of the slot is changed so that

E r = E_ = H z = 0 (AI)

In this case, the entire interaction is uniquely described by the field compo-

nent E z. The wave equation which describes the propagation of the electric

vector is expressible in the form

But,

and

--9

E z = E(r,_)_ z

(A2)

(A3)

n = n(r)

Therefore, equation (A2) reduces to

i _ E z (r,¢ i _2Ezl(r,_)

r _r _r r2 _2

+ k02n 2(r)Ez I(r,_) = 0 (a<r<b)

Contrary to equation (4), equation (A4) does not depend upon the gradient of the

complex index of refraction.

The free-space solutions of E z and H_ are

oo

Ezll(r,_) :

m___co

Dm_(2) (k0r) e jm_ (AS)

oo

H_ II(r'_) = _k Dm_(2)'(k0r)eJm_ (A6)
ja)P. 0

m=-_

And in the inhomogeneous medium the solutions become

14



OO

EzI(r,_) = ___ Fm(r)e jm_ (AT)

m:-_

oo

1 __ Fm' (r)e jm_ (AS)
H_ I (r, _) = j_----_ m=-_

At the surface of the cylinder, r = a, the equation for the specified electric

field intensity can be rewritten in the fom

OO

Ez,spec(a, ):
m_..-oo

Ez(a,_*)e -jm_* d_* (Ag)

The tangential components of the fields must be continuous at the air-plasma

interface, and the electric field must be a specified value at r = a. There-

fore, the boundary conditions can be stated in terms of the following equations:

Fm(b) H_(2) (k0 b ) (A10a)
Dm

Fm'(b)

Din

Fm(a) _ 1 _ Ez(a,_-X-)e -jm_* d_* (A10c)
Dm 2_]_

It is desirable to separate the real and imaginary parts of all the quan-

tities involved. To accomplish this, let

Fm(r) = qm(r ) + jsm(r ) (All)
Dm

As a result of equation (All), the expression (A4) expands into the following set

of simultaneous differential equations:

r dr + k02 (k_r) qm- W s = 0

(r dSml k02 IIV (taker2)21 qm1

1 d + sm+W =0
r dr dr /

J

(AI2)

15



As in the case of the axial slot, equations (AI2) are integrated subject to the

boundary conditions

qm (b) = Jm(k0 b)

Sm(b ) = -Ym(k0b )

qmi(b) =-k0Jm+l(k0b) + b Jm(k0b)i

sm (b) k0Ym+ I (k0b) - b Ym(k0b)J

(Ai3)

at r =b.

The solutions at r = a, and the boundary condition at r = a (eq. (Al0c))

are sufficient to specify the pattern. Through the appropriate algebraic manip-

ulation_ the far-field value of the electric field is

Ezll _ _ _k_or e-J(kor-_) _ EClm(a) - JSm(a)_

m_-_ _m(a)_2 + _m(a_ 2

eJm(_ +_)___ E(a_*)e -jm_* d_* (Ai4)

16



APPENDIX B

ARRAY OF SLOT ANTENNAS ON THE CYLINDER

When the problem of the single slot radiator is solved, patterns of a slot

array may be defined without further numerical integrations; that is, the pattern

expression (eq. (27)) is valid for any number of slots on the surface of the

cylinder provided that all the source excitations are included in the integral

___ E¢(a,¢*)e -jm¢* d_*
(B1)

As an example, suppose N slots of infinitesimal width each of amplitude

V--QA n and phase @n are located at points _n on the surface of the cylinder.
a

In this example_ the field at r = a can be expressed in the form

VOLn=I AneJ@ns( ¢* - Cn)1

(Be)

And, the integral (BI) becomes

N

__ " * V0 I Anej_n ___ _(¢*- _n)e-Jm_* de*E_(a, _*)e- jm_ d_* = -_-

n=l

N

J (_n-m_n)

E¢ (a'¢*)e-Om¢* V-_Oa Ane

-_ n=l

(B3)

The pattern for an array of thin slot antennas is therefore defined by the

series

Ii _ _-tm-'(a)"-Jura'(a)_eJm(_-_n+_) +j_nm=-oo n=l Anl_m'(a)_2 + _'(a)_

(B4)

17



APPENDIX C

IMPEDANCE OF A CYLINDER OF CURRENTS

If the circumferential slot described in appendix A is fully open the fields

are independent of the azimuthal coordinate _, and the appropriate differential
equations become:

r dr _r + Vq - sW = 0

•r dr _r + Vs + qW = 0

(el)

These equations are numerically integrated from r = b and r = a_ with initial
conditions

q(b)

s(b)

q'(b)

s'(b)

[

=-koJi(ko_)I
=

(C2)

where

q(r) + js(r) -
EZI(r)

D o
(c3)

At r = a the specified electric field is a constant such that

Ez, spec = EO (c4)

Thus, the boundary condition at r = a requires that

and the far-field value of Ez II

q(a)+ is(a) EO
DO

becomes:

(c5)

II
Ez

q(a) + js(a) e

J (kor- _)
(c6)

18



Dividing the magnitude of equation (C6) by

is the circle

E0 defines the pattern which

ipz(_)l_- i
_ql(a) + sl(a)

(C7)

This result, however, is not the general solution because the wave may also

propagate in the region r < a. This is a point which was not considered in

previous sections of this report because of the difficulty in applying the bound-

ary conditions. (See the introduction of ref. 13.) Instead of requiring a

specified field to exist r = a, the current concept discussed by Harrington in

reference 14 is introduced in order to generalize the nature of the source and to

simplify the expression defining the source impedance. The geometry of this

problem is shown in figure 13.

The boundary conditions at r = b (eqs. (C2)) and the differential equa-

tions (eqs. (CI)) apply to this problem, however, the boundary conditions at

r = a must be altered, so that

_z°(a): _I(a): Do_(a)+ js(a)_

_¢I(a)- _¢O(a): DOj_oG,(a)+ js,(a)_- _¢°(a): Jz

Since the fields must be finite at r = % the solutions of

r __ 0 must be of the form

EzO(r) = C2Jo(kr)

E and H for

_O(r) 02 -k%: Jo'(kr) : -- Jl(kr)
jm_i0 j_o_iO

The boundary conditions at r = a require that:

Do_(a)+ js(a)_- CWO(ka): o zl
Do_'(a)+ js'(a)_+ kC_l(ka):j_J

Therefore, the solutions of the unknown coefficients are

D O =

j_oJzJO(ka)

(c8)

(C9)

(ClO)

(Cll)
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and

C2=

_(a) + js(a)_ j_OJz

kJl(ka)_q(a ) + js(a)_ + J0(ka)Eq'(a ) + js'(a)_

The far-field expression for the magnitude of the electric vector therefore

becomes

Ezll _ jc_0JzJ0(ka) e i__0r
kJl(ka ) _(a) + js(a)3 + Jo(ka)Eq'(a ) + js'(a_

(C12)

(CI3)

_k0Jzi_
Normalizing the absolute value of equation (C13) with respect to _0 _-_r

results in the following expression for the pattern:

-
Jl(ka) '(a + s(a) s'
_ q(a) + q j0-_-_% + (a

(el4)

The source impedance per unit length of the cylinder of currents, as given by

Harrington (ref. 14, p. 228) is, in the notation of the present paper,

2_aJz*Ezl r=a

(czs)

where Jz* is the complex conjugate of the surface current density. Since

( )Ez r=a

[q(a)+ js(a)]j_OJzJO(ka)

kJl(ka)Eq(a ) + js(a)_ + Jo(ka)_'(a)+ js'(a)_

(C16)

equation (C15) becomes
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APPENDIX D

SCATTERING FROM PLASMA COATED CYLINDERS

The problem discussed in this appendix is concerned with expressions which

can be used to compute the scattering patterns of plane waves interacting with a

cylinder which is coated with an inhomogeneous plasma. In order to present a

general solution_ two polarizations of the incident plane wave must be con-

sidered - namely, the electric vector directed parallel to the Z-axis, and the

electric vector perpendicular to the Z-axis.

Case I: Electric Vector Polarized Along the Z-Axis

The exponential dependence of a plane-wave incident on the cylinder along

the positive X-axis can be transformed into a series of cylindrical functions

(ref. 14, p. 232) such that

• -Jkox ZEz I = E0e = E0

m._-_

j-mJm (kor) eJm_ (Ol)

When the plane wave interacts with the coated cylinder, scattering occurs; there-

fore, the field in free space is the sum of the incident and scattered energy,
that is

Ez II = Ez i + Ez s (D2)

Since the scattered energy consists of outgoing waves, the solution must be of
the form

-m (2) eJm_( orl
m._.., oo

(D3)

Therefore, equation (D2) becomes

Ez II = E 0 _,

m=-_
j-m[Jm(k0r) + am_2) (k0r)_ ejm_

= E 0
m_=__IJm (k0r) +

a_(2) (k0r)_ ejm(_- 2) (D4)
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Also,

m=-oo

The field solutions in the plasma are of the form

(DS)

oo

Ez I = _ Fm (r)ejm_

m=-co

(D6)

and

co

1 _ eJm_H_ I = Je_O Fm'(r)

m=-co

and the continuity relationships at r = b require that

Fm(b) = EO_m(ko b) + am_(2)(kob_e -Jm_

Fm,(b) = E0 m,(k0b ) + 2) (kob e-J

The boundary conditions at r = a require that

JJz(a,¢

where the current density may be expressed as a Fourier expansion

(D7)

(D8)

(D9)

m _-._co

Jz(a, _*)e -jm_* d_* (DIO)

With the use of equation (DI0) the boundary conditions may be written as follows:

Fm'(a) = 0 ....

Fm,(a ) = Je_uO ___ Jz(a,¢*)e -jm¢* d_* - b

(Dll)
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If Fm(r ) is redefined such that

Fm(r)

bm = qm(r) + Jsm(r)
(DI2)

then the differential equations which describe wave propagation in region II
b e com e

_ + ko2
ko2r 0 qm - s = 0

1 d I? dSml + I V m2 )sin + qmWI = 0r _r dr / k02 kyr 2

J

However_ in this case the integration must begin at r = a, subject to the
initial conditions

(m3)

The boundary conditions at

ential equations at r = b

qm(a)= o

Sm(a ) = 0

qm'(_)= l

Sm'(a ) = 0

r = b (eqs. (D8)) and the solutions of the differ-

result in the two following simultaneous equations:

(n14)

-3m--

b_ m(kob) + 2)(k 0 e 2 = qm(b) + JSm(b)

' +
_mm m e =qm JSm'

(D15)

and the two unknown coefficients become

am

Jm'(ko b) [qm(b) + JSm(b)] - Jm(ko b) [qm'(b) + JSm'(b) _

N_2)(kob)[qm,(b) + JSm'(b)- ] - H_2)'(kob)_qm(b)+ JSm(b _

(D16)
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b m =

2jE0e

where use has been made of the relationship

(k0 (k0 )=  b2J

(DI7)

(DI8)

Therefor% the far-field expression for the scattered energy is

E _k_o r -J(kor-_l_ -- Jm'(kob)[qm(b)+ JSm(b)_- Jm(kOb) lqm'(b)+ jsm'(b)l
Ez s _ 0 e _(2)(k0b)[qm,(b) + jSm'(b)] _(2),(k0b)[qm(b) + JSm(b) _

e jm_ (DI9)

The scattered field pattern is the absolute value of equation (DI9).

tions (DI0) and (DII), the surface current density is

Jz(a,_) = JmI_- _ )

2E 0 e

0_0_b _(2)(k0b)[qm,(b) + JSm,(b) ] _ _(2)'
m=-_

From equa-

(k0b) [qm (b) + jsm(b)]

(D2o)

Case 2: Electric Vector Polarized in X-Y Plane

The development in this section is similar to the preceding one except it

is easier to operate with the magnetic vector because it consists of a Z-component

only. As befor% the field in free space is

HzII = H 0 _ IJm(kor) + dm_2)(kor)_ ejm(_-2) (D21)

m=-_

where the scattered energy is represented by the second term on the right-hand

side of the equation. And

E_ II - HO L_ d_ (2)')-_e jm -Jc°c0 m=-_ m'(k0r) + (k0r (_ (D22)
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In the plasm% the fields are of the form

oo

I
E¢I - ja_l _, Gm (r) ejm

m=-_

(023)

The boundary conditions at r = b are

2)(kob e = Gm(b )

' )_ -J_ _o+ d_ (2) (k0b e 2 e(b) Gin'(b)

(024)

and at r = a

_m' =0

% : -1 f_ j¢(a,¢.)e-Jm_ _ de* = em

J

(D25)

By defining

Gm(r) _ tm(r ) + Jum(r)
em (D26)

equations (D24) are integrated with

tm(a ) = 1 1

u_(a) = o_

tm'(a ) = 0 I

u='(a) = oJ

as initial conditions.

(D2T)

The solutions to the differential equations at r = b and the boundary con-

ditions at r = b determine the unknown coefficients in the form
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dm

(o28)

e m =

2jHo[V(b}+ jW(b)]
-jm_

e

_b_(2)(kob)[tm,(b) + jttm,(b)l _ H(2)'(kob)IV(b) + jW(b)_ [tm(b )
+ jum(b)]_

(D29)

The far-field expression for the scattered energy is of the form

co

m=-_

IV(b) + JW(b) 1 Itm(b)+ JUm(b)_Jm'Ik0b) - Itm '(b) + JUm'(b)IJm(k0b) eJm_

H(2)(k0b)Itm'(b) + jum'(b _ - _(b)+ Jura(b)_ IV(b)+ JW(b)_H(2)'(k0 b)

(D30)

and the surface current density is

= _bko2J_0_(b} + jW{b__

m_-_

2 !

(}kob
H_ ( ) jum(b) _ H_2)(kob) _m,(b )

k o
+ Jum'(b _

(D31)
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APPENDIX E

DETERMINATION OF APPROXIMATE PATTERNS

The equation which describes the propagation of electromagnetic waves radi-

ating from an axial slot into a homogeneous plasma is of the form:

I d I._dGm_ k021n2 m2 _I

- Gm : 0 (El)

r _r dr ]+ (kor)

The solution to this equation can be expressed as a linear combination of Hankel

functions, so that

Gm= Am_ (I) (nkor) + Bm_ (2) (nkor)

If the argument nkor is large_ an asymptotic expansion results in the fol-
lowing solution

i

Gm_ _____lameJnkor + bm e-3nkOr) (E3)

And, the derivative of equation (E3) is

Gm'_ J_lameJnkor- bm e-jnkOr) (E4)

The boundary conditions (eqs. (13a) and (13b)) result in the following equations

for a line source radiating into the plasma

jnkob -jnkob
ame bme

+ :0

amJ _-_ eJnkob

n2Vb

!

bmJ_ e-jnkOb CmHm(2) (kob) =0j (ES)

_ am_-_ ejnkOa + bm_-_ e-Jnkoa, VO
_e V a _ V a 2_a
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A few algebraic manipulations result in a solution of the unknown coeffi-

cients in the form

Vo i n_eo

Cm =-J a 2_ k0

(E6)

But, because _ >> i
k0

Consequently,

VO 1
Cm _ -J _0_a 2_

_(2) '(kob)cos nko( b _ a)

(E7)

e-J(kor- _)

H IIfr V0 1 _CO_ a)z _ ,_) _ -J a 2_ cos nko(b

_ eJm(_+ _)

m=__ _2)'(ko b)

(ES)

If the cylinder is uncoated, the solution to the problem is

II V0 1 _0_oe-J(kor-_)_ ejm(_+_)
H z (r,_) _ -j a 2:_ "-'_'_-- _b'm:-.-

(E9)

In view of the similarity of equations (E8) and (E9), the pattern of a coated

cylinder, with the approximations given_ can be expressed in the form

(El0)

where Pz*(_) is the free-space pattern of a source located on a perfectly con-

ducting cylinder of radius b. Furthermore, if the plasma thickness is suffi-

ciently large, equation (ElO) becomes:

Pz (¢) _ 2e-_(b-a) Pz (¢) (Ell)
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Figure 3.- Effect of plasma frequency, collision frequeney_ coating thickness, and structure size

on antenna patterns for koa = 0.52 and b/a = 1.2. Homogeneous plasma.
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on antenna patterns for koa = 0,_2 and b/a = 1.6. Homogeneous plasma.
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on antenna patterns for koa = 1.43 and b/a = 1.20. Homogeneous plasma.
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